端海教育集团
全国报名免费热线:4008699035 微信:shuhaipeixun
或15921673576(微信同号) QQ:1299983702
首页 课程表 在线聊 报名 讲师 品牌 QQ聊 活动 就业
 
Big Data Business Intelligence for Criminal Intelligence Analysis培训

 
  班级规模及环境--热线:4008699035 手机:15921673576( 微信同号)
      每个班级的人数限3到5人,互动授课, 保障效果,小班授课。
  上间和地点
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山学院/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦 【广州分部】:广粮大厦 【西安分部】:协同大厦
最近开间(周末班/连续班/晚班):2018年3月18日
  实验设备
    ◆小班教学,教学效果好
       
       ☆注重质量☆边讲边练

       ☆合格学员免费推荐工作
       ★实验设备请点击这儿查看★
  质量保障

       1、培训过程中,如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
       2、课程完成后,授课老师留给学员手机和Email,保障培训效果,免费提供半年的技术支持。
       3、培训合格学员可享受免费推荐就业机会。☆合格学员免费颁发相关工程师等资格证书,提升职业资质。专注高端技术培训15年,端海学员的能力得到大家的认同,受到用人单位的广泛赞誉,端海的证书受到广泛认可。

课程大纲
 
  • Day 01
    =====
    Overview of Big Data Business Intelligence for Criminal Intelligence Analysis
  • Case Studies from Law Enforcement - Predictive Policing
    Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
    Emerging technology solutions such as gunshot sensors, surveillance video and social media
    Using Big Data technology to mitigate information overload
    Interfacing Big Data with Legacy data
    Basic understanding of enabling technologies in predictive analytics
    Data Integration & Dashboard visualization
    Fraud management
    Business Rules and Fraud detection
    Threat detection and profiling
    Cost benefit analysis for Big Data implementation
    Introduction to Big Data
  • Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
    MPP (Massively Parallel Processing) architecture
    Data Warehouses – static schema, slowly evolving dataset
    MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
    Hadoop Based Solutions – no conditions on structure of dataset.
    Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
    Apache Spark for stream processing
    Batch- suited for analytical/non-interactive
    Volume : CEP streaming data
    Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
    Less production ready – Storm/S4
    NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
    NoSQL solutions
  • KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
    KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
    KV Store (Hierarchical) - GT.m, Cache
    KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
    KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
    Tuple Store - Gigaspaces, Coord, Apache River
    Object Database - ZopeDB, DB40, Shoal
    Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
    Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
    Varieties of Data: Introduction to Data Cleaning issues in Big Data
  • RDBMS – static structure/schema, does not promote agile, exploratory environment.
    NoSQL – semi structured, enough structure to store data without exact schema before storing data
    Data cleaning issues
    Hadoop
  • When to select Hadoop?
    STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
    SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
    Warehousing data = HUGE effort and static even after implementation
    For variety & volume of data, crunched on commodity hardware – HADOOP
    Commodity H/W needed to create a Hadoop Cluster
    Introduction to Map Reduce /HDFS
  • MapReduce – distribute computing over multiple servers
    HDFS – make data available locally for the computing process (with redundancy)
    Data – can be unstructured/schema-less (unlike RDBMS)
    Developer responsibility to make sense of data
    Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
    =====
    Day 02
    =====
    Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?
  • Hadoop vs. Other NoSQL solutions
    For interactive, random access to data
    Hbase (column oriented database) on top of Hadoop
    Random access to data but restrictions imposed (max 1 PB)
    Not good for ad-hoc analytics, good for logging, counting, time-series
    Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
    Flume – Stream data (e.g. log data) into HDFS
    Big Data Management System
  • Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
    Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
    Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
    In Cloud : Whirr
    Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence
  • Introduction to Machine Learning
    Learning classification techniques
    Bayesian Prediction -- preparing a training file
    Support Vector Machine
    KNN p-Tree Algebra & vertical mining
    Neural Networks
    Big Data large variable problem -- Random forest (RF)
    Big Data Automation problem – Multi-model ensemble RF
    Automation through Soft10-M
    Text analytic tool-Treeminer
    Agile learning
    Agent based learning
    Distributed learning
    Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
    Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis
  • Technology and the investigative process
    Insight analytic
    Visualization analytics
    Structured predictive analytics
    Unstructured predictive analytics
    Threat/fraudstar/vendor profiling
    Recommendation Engine
    Pattern detection
    Rule/Scenario discovery – failure, fraud, optimization
    Root cause discovery
    Sentiment analysis
    CRM analytics
    Network analytics
    Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
    Technology assisted review
    Fraud analytics
    Real Time Analytic
    =====
    Day 03
    =====
    Real Time and Scalable Analytics Over Hadoop
  • Why common analytic algorithms fail in Hadoop/HDFS
    Apache Hama- for Bulk Synchronous distributed computing
    Apache SPARK- for cluster computing and real time analytic
    CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
    KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
    Tools for eDiscovery and Forensics
  • eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
    Predictive coding and Technology Assisted Review (TAR)
    Live demo of vMiner for understanding how TAR enables faster discovery
    Faster indexing through HDFS – Velocity of data
    NLP (Natural Language processing) – open source products and techniques
    eDiscovery in foreign languages -- technology for foreign language processing
    Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification
  • Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
    Network infrastructure / Large datapipe / Response ETL for real time analytic
    Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
    Gathering disparate data for Criminal Intelligence Analysis
  • Using IoT (Internet of Things) as sensors for capturing data
    Using Satellite Imagery for Domestic Surveillance
    Using surveillance and image data for criminal identification
    Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
    Combining automated data retrieval with data obtained from informants, interrogation, and research
    Forecasting criminal activity
    =====
    Day 04
    =====
    Fraud prevention BI from Big Data in Fraud Analytics
  • Basic classification of Fraud Analytics -- rules-based vs predictive analytics
    Supervised vs unsupervised Machine learning for Fraud pattern detection
    Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
    Social Media Analytics -- Intelligence gathering and analysis
  • How Social Media is used by criminals to organize, recruit and plan
    Big Data ETL API for extracting social media data
    Text, image, meta data and video
    Sentiment analysis from social media feed
    Contextual and non-contextual filtering of social media feed
    Social Media Dashboard to integrate diverse social media
    Automated profiling of social media profile
    Live demo of each analytic will be given through Treeminer Tool
    Big Data Analytics in image processing and video feeds
  • Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
    LTFS (Linear Tape File System) and LTO (Linear Tape Open)
    GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
    Fundamentals of image analytics
    Object recognition
    Image segmentation
    Motion tracking
    3-D image reconstruction
    Biometrics, DNA and Next Generation Identification Programs
  • Beyond fingerprinting and facial recognition
    Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
    Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
    Big Data Dashboard for quick accessibility of diverse data and display :
  • Integration of existing application platform with Big Data Dashboard
    Big Data management
    Case Study of Big Data Dashboard: Tableau and Pentaho
    Use Big Data app to push location based services in Govt.
    Tracking system and management
    =====
    Day 05
    =====
    How to justify Big Data BI implementation within an organization:
  • Defining the ROI (Return on Investment) for implementing Big Data
    Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
    Revenue gain from lower database licensing cost
    Revenue gain from location based services
    Cost savings from fraud prevention
    An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
    Step by Step procedure for replacing a legacy data system with a Big Data System
  • Big Data Migration Roadmap
    What critical information is needed before architecting a Big Data system?
    What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
    How to estimate data growth
    Case studies
    Review of Big Data Vendors and review of their products.
  • Accenture
    APTEAN (Formerly CDC Software)
    Cisco Systems
    Cloudera
    Dell
    EMC
    GoodData Corporation
    Guavus
    Hitachi Data Systems
    Hortonworks
    HP
    IBM
    Informatica
    Intel
    Jaspersoft
    Microsoft
    MongoDB (Formerly 10Gen)
    MU Sigma
    Netapp
    Opera Solutions
    Oracle
    Pentaho
    Platfora
    Qliktech
    Quantum
    Rackspace
    Revolution Analytics
    Salesforce
    SAP
    SAS Institute
    Sisense
    Software AG/Terracotta
    Soft10 Automation
    Splunk
    Sqrrl
    Supermicro
    Tableau Software
    Teradata
    Think Big Analytics
    Tidemark Systems
    Treeminer
    VMware (Part of EMC)
    Q/A session
 

-

 

  备案号:备案号:沪ICP备08026168号-1 .(2014年7月11)..............